WP 2: Vibration measurements

Net-Acoustics for timber based lightweight building and elements

Anders Homb, SINTEF Building & Infrastructure
October 2012
Content of the e-book

- Measurements of floor deflections: chapter 4
- How to measure floor vibrations: chapter 5
- Assessment of walking-induced floor vibrations according to the SBR Guideline: chapter 6
- References: all chapters
Presentation - overview

- Floor deflections
- Floor vibration, excitation principles
- Analysis and characterization of floor vibrations
- Damping measurements
- Methods specific for the assessment of floor vibrations
 - Eurocode 5
 - Canadian method
 - SBR Guideline
Floor deflection measurements

- **Principles**

- **Transducer mounting – separate from floor construction**

 When field measurements:
 - supported at load bearing positions
 - supported transversely if low transverse stiffness of the floor
Floor deflection measurements, contin.

- **Measurement of global deflection**
 both point load and transducers "down" to beams or stiff plate on beams
 necessary to "short-circuit" soft floor coverings, underlayer products
 or resilient floor products

- **Measurement at weakest position**
 Normally in center of the span width
Floor vibration measurements

Excitation principles

- **Impact sources**
 - **Modal hammer**
 - + simple
 - need statistical treatment
 - ÷ for field use
 - **Heel impact**
 - + simple
 - need statistical treatment
 - **Reproduceable impact**
 - + useable also in field
 - ÷ more complicated
Floor vibration measurements
Excitation principles, continued

• **Shaker excitation**
 - different excitations, for instance sine, random, broadband
 - require skilled operators, therefore most common studying complex structures

• **Both impact and shaker excitation applicable for floor vibration measurements**
Floor vibration measurements
Analysis & characterization

- **Fundamental frequency**
 - from FFT-spectra
 - from Frequency Response Function (FRF)
Floor vibration measurements
Analysis & characterization

• **Modal analysis**
 - FRF calculation and curve-fit
 - Mode shape
 - Modal damping

• **Example of experimental setup**

• **Experimental mode shapes**

mode 1 mode 2 mode 3 mode 4 mode 5
Floor vibration measurements
Analysis & characterization

- **Integrated parameter from the transfer function**
 according to SBR guideline method to determine the OS-RMS\(_{90}\) - value

- **Integration of acceleration level**
 (seldom used)

\[
a_{RMS} = \sqrt{\frac{1}{T} \int_0^T a^2(t) \, dt}
\]
Damping measurements, low frequencies

- **Impact excitation**
 - a) logarithmic decrement or envelope fitting: from time domain spectra
 - b) half-power bandwidth: from FFT spectra or FRF's
 - c) modal damping: from curve-fit of FRF's

- **Shaker excitation**
 - all methods based on FFT spectra or FRF's
Methods specific for the assessment of floor vibrations
Eurocode-5 parameters

- **Maximum impulse velocity response**, v_{max}
 measurement method not suggested – or verified

- **Fundamental frequency**, f_o
 according to page 8

- **Damping**
 only default value for calculations are given
 If measurements -according to page 11, accuracy?

- **Static deflection**, Δ
 according to page 4 & 5
Methods specific for the assessment of floor vibrations
Canadian design-guide method

- **Fundamental frequency,** f_0
 according to page 8

- **Static deflection,** Δ
 according to page 4 & 5

- **Criteria diagram example**
 - solid line = criteria curve
 - markers = measured floors
Methods specific for the assessment of floor vibrations
SBR Guideline

• OS-RMS$_{90}$ value
 transfer mobilities
 from point of excitation
 to point of observation
 convoluted with the walking load
 spectra, see also page 10

• Isograph, damping dependent
 suggested, but values not verified
 If measurements:
 according to page 11, accuracy?
Summary

- **Eurocode 5**
 - measurement method not suggested or verified
 - calculation method not verified with respect to human perception

- **Canadian method**
 - measurement methods verified
 - criteria verified with respect to human perception
 - damping not included

- **SBR Guideline method**
 - measurement method verified, sufficient accuracy (?)
 - damping, indirectly included but how to determine?
Further work

• Harmonization of methods
 - interesting or possible?

• Decision on quantities
 - depends on the method

• Damping properties
 - special need
 - validation of measurements & calculations