WP2: Sound Performances

Low-frequency airborne and impact sound insulation

Delphine Bard
Lund University (Sweden)
Content of the e-Book

• Improved procedure for measuring sound insulation between rooms: *Chapter 1*

• Proposal to use sound intensity for measuring direct impact sound: *Chapter 2*

• Methods for estimating radiation efficiency of building elements and vibration level difference of junctions: *Chapter 3*
Introduction

• Sound performances are important in lightweight buildings:
 – Poor sound insulation in the low-frequency range (20-200 Hz)
 – High-demand acoustic quality is hard to achieve

• Existing measurement methods (ISO 140)
 – Poor repeatability
 – Bad reproducibility
 – Relevance to room occupants
Improved method for Sound Insulation (I)

• ISO 140:
 – Diffuse field in rooms
 – In practice; many rooms $V<25 \, m^3$
 • Non-existent diffuse field at low frequencies
 • Sampling of sound pressure level in central zone

• Measurements following latter norm:
 – Less reliable
 – Less relevant to building occupants

• COST FP0702
 – Revise ISO 140 (parts 4/5/7/14); Korea 2009
 – Draft (spring 2012): ISO/DIS 16283-1
Improved method for Sound Insulation (II)

- Two proposed measurement procedures (L_p):

 1) Default method: (for all frequencies):

 - Energy-average sound pressure level:
 - fixed microphone or a manually-held microphone
 - an array of fixed microphones
 - mechanized continuously-moving microphone
 - manually-scanned microphone

 - Measurements taken in the central zone of a room at positions away from the room boundaries
Two proposed measurement procedures:

2) Low-frequency method:

- 50, 63, 80 Hz one-third octave bands in the source and/or receiving room when its volume is smaller than 25 m³
- In addition to the “default method”
- Additional measurements of the sound pressure level in the corners of the source and/or receiving room
 - Using either a fixed microphone or a manually-held microphone
- Low-frequency energy-average sound pressure (combining measurements from both procedures)

\[
L_{LF} = 10 \log \left(\frac{10^{0.1L_{Comer}} + (2 \cdot 10^{0.1L})}{3} \right)
\]
Improved method for Sound Insulation (IV)

Figure 2. (a) default procedure in the central zone of a room (b) low-frequency procedure using corner measurements. NB Grey shaded areas highlight the 50, 63 and 80 Hz one-third octave bands.

Improved repeatability [C. Hopkins and P. Turner]
Improved method for Sound Insulation (V)

- Reverberation time:
 - The decay of the RT curve in rooms (using gypsum or timber board) can be sufficiently short that may be affected by the decay time of the one-third octave band filters in the analyser (in the 50 Hz, 63 Hz and 80 Hz bands)
 - Possible solution: use of a 63 Hz octave band filter due to its wider bandwidth which allows the measurement of shorter reverberation times
Improved method for Sound Insulation (VI)

- Reverberation time (cont):
 - Solution proposed in ISO/DIS 16283-1
 - Default procedure (receiving room for all reverberation times)
 - Low-frequency procedure ($V_{\text{receiving}} < 25 \text{m}^3$)
 - RT measured in the 63 Hz octave band instead of the 50/63/80 Hz one-third octave bands (single value for D_{nT} and/or R^* calculation)

<table>
<thead>
<tr>
<th>One-third-octave band centre frequency (Hz)</th>
<th>% satisfying $BT > 8$ criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Using individual decay curves</td>
</tr>
<tr>
<td>50</td>
<td>37 %</td>
</tr>
<tr>
<td>63</td>
<td>48 %</td>
</tr>
<tr>
<td>80</td>
<td>87 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Octave band centre frequency (Hz)</th>
<th>% satisfying $BT > 8$ criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Using individual decay curves</td>
</tr>
<tr>
<td>63</td>
<td>98.8 %</td>
</tr>
</tbody>
</table>

Table 1. Percentage of reverberation times satisfying the $BT>8$ criterion in timber and steel frame buildings when using one-third octave bands compared to octave bands.

[C. Hopkins and P. Turner]
L_f impact sound level using intensity (I)

- Sound level and reverberation time measurements at low frequencies are still problematic
 - Intensity method is expected to cope with these shortcomings

- Governing equations:

\[
L_{n,I} = L_{in} + 10 \cdot \log \left(\frac{S}{m^2} \right) - 4 \text{ dB}
\]

\[
L_{n,I,M} = L_{n,I} - K_C
\]

\[
K_C = 10 \cdot \log \left(1 + \frac{S_b \cdot \lambda}{8 \cdot V} + \frac{L \cdot \lambda^2}{32 \cdot \pi \cdot V} \right)
\]

Normalized impact sound (intensity)

Account for sound pressure enhancement

Waterhouse correction
Discrepancies in the low-frequencies (lab). Further investigations.

Figure 5: Comparison of the modified intensity impact sound level L_{n,I_M} with the impact sound level L_n at the right hand side and the modified intensity sound reduction index R_{I_M} according to ISO15186 with the sound reduction index R according to ISO 140 at the left hand side. At low frequencies a deviation is observable, which occurred in both measurements.

[U. Schanda and F. Schöpfer]
L_f impact sound level using intensity (III)

- Discrepancies in the low-frequencies (in-situ)

Figure 7: Comparison of in-situ measurements of airborne and impact sound insulation according to ISO 140 with results obtained by measuring the direct path of the sound transmission with intensity and the flanking paths with accelerometer and combining the contributions to a total sound reduction R'_sum and L'_n,sum, respectively.

[U. Schanda and F. Schöpfer]
The method:
- Feasible
- Reasonable results even in the low frequency range.
- Advantage:
 - independency on the RT and sound level which might vary
- Disadvantage
 - large instrumental and operating expense.
Radiation efficiency and junction vibration level difference (I)

- Governing equation (Radiation efficiency):

\[10\log(\sigma) = L_p - 6 - L_v + 10\log\left(\frac{A}{S}\right) \]

- Method:
 - Sound pressure measurements:
 - \(L_p \) and A: following ISO 140-3 (more methods in literature)
 - Vibrations measurements:
 - \(L_v \) measured as the junction vibration level difference method
 - Radiation efficiency
 - Highly dependent on the excitation
 - Up to 10 dB difference between mechanical and airborne excitation in [M. Villot and C. Guigou-Carter]
Radiation efficiency and junction vibration level difference (II)

Figure 1: Measured radiation efficiency of a single leaf wall in the cases of (a) mechanical excitation and (b) airborne excitation.

[M. Villot and C. Guigou-Carter]
Radiation efficiency and junction vibration level difference (III)

- Standard EN 10848 series proposes two methods of measuring flanking transmission of airborne and impact noise between adjoining rooms
 - Shielding building elements (cumbersome)
 - Vibration level difference (diffuse excitation)

Figure 3: Top-view of a lightweight floor/wall junction with joists // junction
Radiation efficiency and junction vibration level difference (IV)

- Vibration level difference:
 \[D_{v,ij,situ} = D_{v,ij,n} - 10 \log \left(\frac{l_{ij,situ}}{\sqrt{S_{situ,i} \cdot S_{situ,j}}} \right) \]

Figure 4: Measured normalized velocity level differences of a lightweight floor-wall X-junction.

[M. Villot and C. Guigou-Carter]
Thank you for your attention!

Delphine.Bard@construction.lth.se